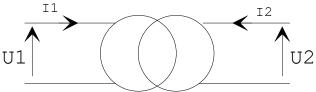
Le Transformateur électrique

A savoir

Position du problème.

Le problème du transport de l'énergie électrique est le suivant:


Transformateur élévateur

Transformateur abaisseur

Une centrale produit de l'énergie électrique. Un utilisateur situé loin consomme cette énergie. L'énergie doit donc être transportée sous haute tension (200 000 V) pour limiter les pertes en ligne. Il est donc nécessaire d'avoir une machine capable d'élever la tension à la sortie de l'alternateur de la centrale et aussi d'abaisser la tension au lieu d'utilisation. Une telle machine existe pour le **courant alternatif** c'est le **transformateur statique**.

Le transport de l'énergie électrique sous haute tension est plus économique.

Le transformateur monophasé.

primaire
N, spires

Courant primaire
U,

Tension primaire
U,

Noyau

Noyau

Un transformateur monophasé comporte:

- *Un circuit magnétique fermé* parcouru par un flux magnétique alternatif.
- Deux enroulements électriques indépendants:
 - Le premier appelé primaire de **N1** spires relié à la source de tension **u1** alternative.
 - Le deuxième appelé secondaire de **N2** spires isolées, aux bornes de la charge.

Le rapport de transformation d'un transformateur est le rapport du nombre de spires du primaire sur le nombre de spires du secondaire.

$$m = \frac{U_2}{U_1} = \frac{N_2}{N_1} = \frac{I_1}{I_2}$$

$$P_1 = P_2 \quad \eta = 1$$

Le Transformateur électrique

Exercice n°1.

Un transformateur monophasé compte N1=400 spires au primaire et N2=40 spires au secondaire. Il est alimenté par une tension alternative 240V, 50Hz.

- a) Calculez U20 à vide.
- b) Que devient U2 si U1= 220V.
- c) Combien faudrait-il de spires N2 pour obtenir U2=48 V avec U2=240V?

Correction

- a) $U_2/U_1=N_2/N_1=$ $U_2=U_1\times N_2/N_1=240\times 40/400=24V$
- b) Si U₁=220V U₂=22V
 - c) $N_1 \times U_2/U_1=N_2=400\times48/240=80$ spires

Exercice n°2.

Un transformateur marqué 440V/220V est alimenté au primaire par une tension de valeur efficace 220V. La bobine primaire comporte 1000 spires. La bobine secondaire comporte 500 spires.

- a) Calculez la tension secondaire efficace à vide.
- b) On retourne le transformateur. Quelle est la tension efficace du nouveau secondaire à vide?
- c)Quelle est la valeur maximale de la tension (ou valeur crête) de la tension au secondaire à vide?
- a) $U_2=U_1xN_2/N_1=220x500/1000=110V$
- b) Le transformateur retourné devient un transformateur elévateur avec un rapport de transformation $m=U_2/U_1=2$ La Tension secondaire devient $U_2=440V$ si $U_2=440V$ alors $\hat{U}_2=440V$ arcine(2)=622V

Le Transformateur électrique

Exercice n°3.

- .La puissance apparente d'un transformateur en charge est S=2KVA.
- a) quelle est la charge fournie par le secondaire si la charge est:
 - purement résistive
 - -inductive cos \$\pi = 0.8
- b) avec la charge purement résistive on a relevé U1=220V I2=18,2A.
- Quel est le rapport de transformation du transformateur?

A) P=SxCos(φ)

Charge résistance $cos(\phi)=1$ doncP=S=2000W Charge inductive P=SxCos(ϕ)=2000x0,8=1600W

b)
$$U_2=S/I_2=2000/18,2=110V$$

Le rapport de transformation m= $U_2/U_1=110/220=0,5$

Exercice n°4.

Un transformateur monophasé supposé parfait porte les indications suivantes: 220V/24V-1000VA.

On utilise le transformateur en abaisseur de tension:

- 1) Quelles sont les intensités nominales au primaire et au secondaire.
- 2) Quelle est la valeur du rapport de transformation.
- 3) Sachant que le primaire comporte 1000 spires, quel est le nombre de spires du secondaire.

1)
$$U_2/U_1=N_2/N_1$$
 $U_1=220V$ $U_2=24VS=1000VA$ $I_1=S/U_1=1000/220=4,54A$ $I_2=S/U_2=1000/24=41,7A$

- 2) $m = U_2/U_1 = 24/220 = 0,109$
- 3) $N_2=N_1 \times U_2/U_1=1000\times 24/220=109$ spires

Le Transformateur électrique

Exercice n°5.

Un transformateur monophasé supposé parfait débite un courant de 8A dans une résistance de $27,5\Omega$. Le primaire est alimenté sous 1500V et possède 200 spires. Déterminez:

- La tension au secondaire
- Le rapport de transformation
- L'intensité au primaire
- Le nombre de spires au secondaire
- -Les intensités nominales.
- -L'intensité du primaire à vide.
- -La tension au secondaire en charge.

Exercice n°6.

Un transformateur 220/110V fournit un courant secondaire de 12A.

- -Calculer l'intensité du courant au primaire et les puissances.
- -Calculer les puissances actives et réactives pour des facteurs de puissance de 1; 0,8; 0,6; 0,5