
Exercices Protection électrique

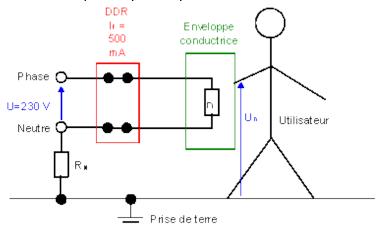
Principe d'un disjoncteur différentiel (DDR)

En l'absence de défaut (pas de rupture d'isolant) $I_1 = I_2 \Rightarrow$ le DDR ne se déclenche pas (les deux interrupteurs restent fermés) car même courant "sortant" que "rentrant".

En présence d'un défaut d'isolement $I_1 > I_2$ avec $I_1 - I_2 = I_D \Rightarrow$ le circuit de détection du DDR va enregistrer cet écart I_D entre l'intensité du courant "sortant" et l'intensité du courant "rentrant". Si I_D atteint I_F (intensité de déclenchement du DDR) les interrupteurs s'ouvrent et l'équipement sera automatiquement mis hors tension.

Durée maximale de maintien de la tension de contact

Tension de contact présumée en Volt	Durée maximale de déclenchement du dispositif
	de protection en seconde
< 50	¥
50	5
75	1
90	0.5
110	0.2
150	0.1
220	0.05


Effet d'électrisation

A partir de 5 mA	Secousse électrique
A partir de 10 mA	Contraction musculaire
A partir de 25 mA	Tétanisation des muscles respiratoires
A partir de 50 mA	Fibrillation ventriculaire : effet irréversible

Exercices Protection électrique

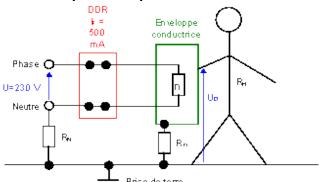
Exercice : Avertissement : La résolution de l'exercice se fait comme si l'installation était alimentée en régime continu.

Partie A: L'installation électrique n'a pas de prise de terre

 R_N est la résistance à la terre du neutre de l'installation. On prendra R_N = 10 Ω .

L'utilisateur, qui est en contact avec l'enveloppe conductrice, est équivalent à une résistance R_H . On prendra R_H = 1000 Ω .

- 1.1) Sur le document , indiquer le cheminement du courant électrique en l'absence de défaut (pas de rupture d'isolant).
- 1.2) Comment se comporte le DDR ?

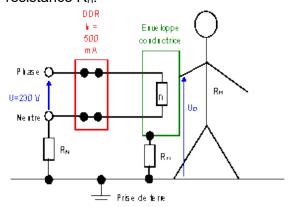

Une rupture d'isolant intervient. Un contact franc entre la phase et l'enveloppe conductrice a lieu.

- 2.1) Reprendre le schéma électrique de l'installation en remplaçant l'utilisateur par une résistance R_H.
- 2.2) Sur le schéma établi au 2.1), indiquer le cheminement du courant de défaut ID.
- 2.3) En établissant une loi des mailles, calculer l'intensité du courant ID.
- 2.4) En déduire la tension U_D aux bornes de l'utilisateur.
- 2.5) En vous appuyant sur les informations générales figurant en début d'énoncé, indiquer le comportement du DDR et justifier le fait que cette installation électrique est très dangereuse.

Exercices Protection électrique

Partie B: L'installation électrique a une prise de terre Rt=200Ω

 R_N est la résistance à la terre du neutre de l'installation. On prendra R_N = 10 Ω .


L'utilisateur, qui est en contact avec l'enveloppe conductrice, est équivalent à une résistance R_H . On prendra R_H = 1000 Ω .

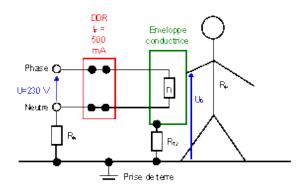
De plus R_T est la résistance de mise à la terre des enveloppes conductrices des appareils électriques. On prendra R_{T1} = 200 Ω .

- 1.1) indiquer le cheminement du courant électrique en l'absence de défaut (pas de rupture d'isolant).
- 1.2) Comment se comporte le DDR ?

Une rupture d'isolant intervient. Un contact franc entre la phase et l'enveloppe conductrice a lieu.

2.1) Reprendre le schéma électrique de l'installation en remplaçant l'utilisateur par une résistance R_H.

- 2.2) Sur le schéma établi au 2.1), indiquer le cheminement du courant de défaut I_D . Ce courant de défaut se décompose en deux parties I_D ' et I_D ".
- 2.3) Sur le schéma établi, deux résistances se retrouvent en parallèle. Lesquelles ?

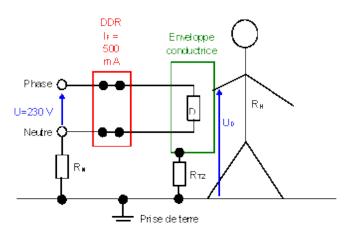

Que vaut la résistance équivalente à cette association en parallèle des deux résistances ?

2.4) En établissant une loi de mailles, calculer l'intensité du courant de défaut ID.

Exercices Protection électrique

- 2.5) Quel est le comportement du DDR?
- 2.6) En fait le DDR s'ouvre lorsque I_D atteint $I_F = 500$ mA.
- 2.6.1) En appliquant la règle du diviseur de courant, déterminer l'intensité du courant traversant l'utilisateur.
- 2.6.2) En déduire la tension U_D aux bornes de l'utilisateur.
- 2.7) En vous appuyant sur les informations générales figurant en début d'énoncé, indiquer et justifier si cette installation est ou n'est pas dangereuse.

Partie C: L'installation électrique a une prise de terreRt=20Ω



 R_N est la résistance à la terre du neutre de l'installation. On prendra R_N = 10 Ω .

L'utilisateur, qui est en contact avec l'enveloppe conductrice, est équivalent à une résistance R_H . On prendra R_H = 1000 Ω .

De plus R_T est la résistance de mise à la terre des enveloppes conductrices des appareils électriques. On prendra R_{T2} = 20 Ω .

- 1.1) Sur le document réponse, indiquer le cheminement du courant électrique en l'absence de défaut (pas de rupture d'isolant).
- 1.2) Comment se comporte le DDR ?

Une rupture d'isolant intervient. Un contact franc entre la phase et l'enveloppe conductrice a lieu.

Exercices Protection électrique

- 2.1) Reprendre le schéma électrique de l'installation en remplaçant l'utilisateur par une résistance R_H.
- 2.2) Sur le schéma établi au 2.1), indiquer le cheminement du courant de défaut I_D . Ce courant de défaut se décompose en deux parties I_D ' et I_D ''.
- 2.3) Sur le schéma établi, deux résistances se retrouvent en parallèle. Lesquelles ? Que vaut la résistance équivalente à cette association en parallèle des deux résistances ?
- 2.4) En établissant une loi de mailles, calculer l'intensité du courant de défaut ID.
- 2.5) Quel est le comportement du DDR?

En fait le DDR s'ouvre lorsque I_D atteint I_F = 500 mA.

- 2.6.1) En appliquant la règle du diviseur de courant, déterminer l'intensité du courant traversant l'utilisateur.
- 2.6.2) En déduire la tension U_D aux bornes de l'utilisateur.

Conclusion

En vous appuyant sur le fait que toute tension inférieure à 50 V ne présente aucun danger (voir informations générales en début d'énoncé) et en supposant que l'installation est toujours protégée par un DDR I_F = 500 mA, évaluer la plus grande résistance de mise à la terre possible pour que l'installation électrique ne présente aucun danger.