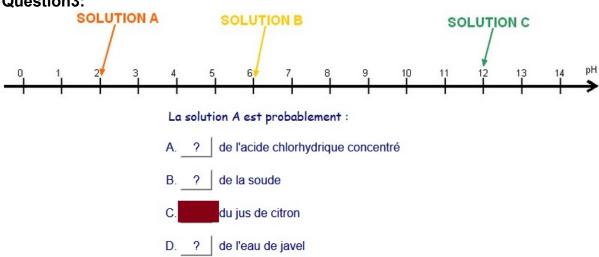
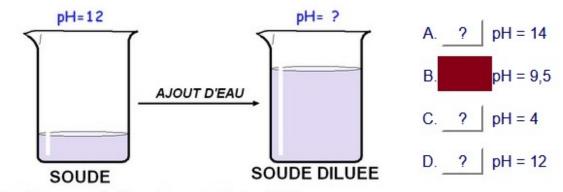
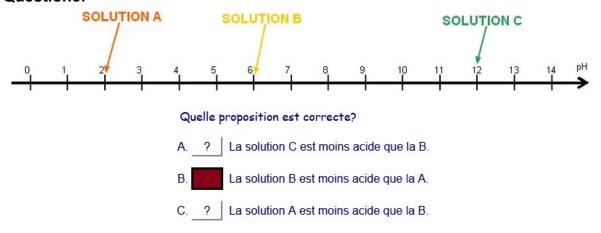

QCM Acides - Bases- pH


Question1:

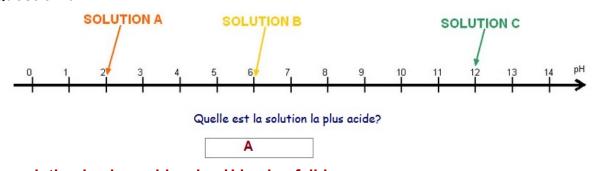
Question2:


Question3:

La soude (base) l'eau de javel (base) HCl concentré acide fort Ph<1, Seul le citron convient

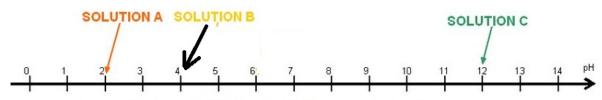

QCM Acides – Bases- pH

Question4:



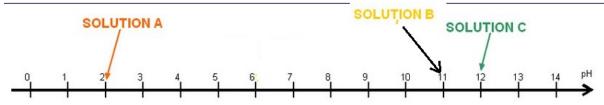
- 4. On dilue une solution de soude dont pH=12
 - . Après la dilution, on mesure à nouveau le pH, on trouve alors :

Quand on dilue une base, le pH augmente, mais ne peut dépasser 7 Question5:


Question 6:

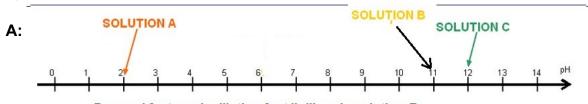
La solution la plus acide a le pH le plus faible

QCM Acides – Bases- pH


Question 7:

Par quel facteur de dilution faut il diluer la solution A pour que son acidité soit la même que B?

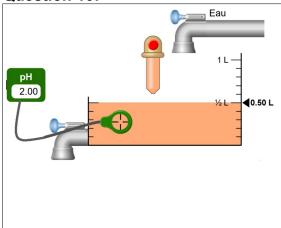
A: par 10 **B:** par 100 **C:** par 2 **D:** par -10 **E:** par -100 **F:** Ce n'est pas possible Quand on dilue par 10 une solution acide son pH augmente de 1. (avec une limite 7)


Question 8:

Par quel facteur de dilution faut il diluer la solution .C pour que son acidité soit la même que B?

A: par 10 **B:** par 100 **C:** par 2 **D:**par -10 **E:** par -100 **F:** Ce n'est pas possible Quand on dilue par 10 une solution basique son pH diminue de 1. (avec une limite 7)

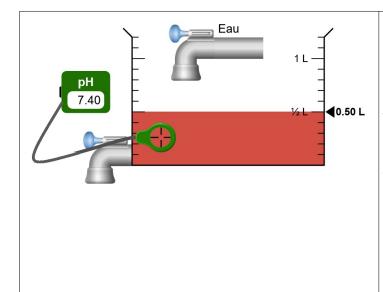
Question9:



Par quel facteur de dilution faut il diluer la solution B pour que son acidité soit la même que C?

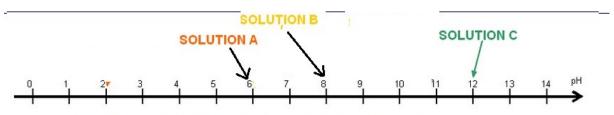
par 10 **B:** par 100 **C:** par 2 **D:**par -10 **E:** par -100 **F:** Ce n'est pas possible II n'est pas possible de rendre une solution basique sans apport d'ion OH-

QCM Acides – Bases- pH


Question 10:

Quelle est la concentration en ion hydroxyde ?
[H₃0⁺]=10⁻²mol/L
[OH⁻]=10⁻¹²mol/L

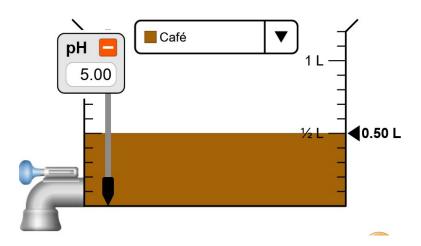
On dilue la solution jusqu'au volume total de 1L. Quel est le nouveau pH? n[H₃0⁺]=cxV= 0,5x10⁻²mol dans la solution mère La concentration dans la solution fille est donc [H₃0⁺]=0,510⁻²mol/L (puisque le volume a doublé. pH=2,3


Question 11:

Quelle est la concentration en ion hydroxyde? $[H_30^+]=10^{-7.4}$ mol/L=4x10⁻⁸ mol/L $[OH^-]=10-14/[H_30^+]=2,5x10^{-7}$ mol/L On dilue la solution jusqu'au volume total de 1L. Quel est le nouveau pH? $n[H_30^+]=cxV=2x10^{-8}$ mol on a rajouté ' $n[H_30^+]=5x10^{-8}$ mol provenant de l'eau. On a un total de : $n_{tot}[H_30^+]=7x10^{-8}$ mol pour 1L soit pH=7,15

QCM Acides – Bases- pH

Question 12:



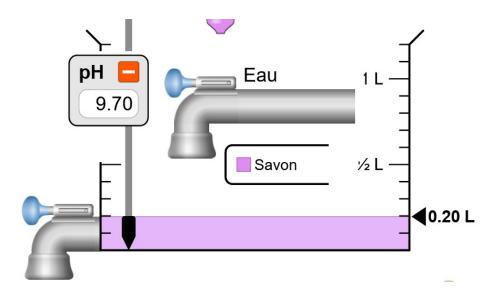
Par quel facteur de dilution faut il diluer la solution A pour que son acidité soit la même que B?

A: par 10 B: par 100 C: par 2 D:par -10 E: par -100 F: Ce n'est pas possible.

La dilution ne peut pas changer le caractère acide ou basique de la solution

Question 13:

Calculer les quantité de matière en :


Calcul des masses molaires : M _{H20}= 18g/mol, M _{H30+}= 19g/mol M _{H0-}= 17g/mol

-eau : n=cxV= -ion H₃0⁺ : ion OH⁻ :

 $[H_30^+]=10^{-5}$ mol/L $[OH^-]=10^{-14}/[H_30^+]=10^{-9}$ mol/L $n[H_30^+]=cxV=0.5x\ 10^{-5}$ mol $n[OH^-]=0.5x10^{-9}$ mol/L $n(H_20)=m/M=500/18=27.8$ mol

QCM Acides – Bases- pH

Question 14:

Quelle sera le pH si on dilue la solution jusqu' à 2,0L? pH=9,7-1=8,7

Quelle sera le pH si on dilue la solution jusqu' à 4,0L?

La solution est basique , on calcule les concentration en OH-Solution mère

 $10^{-pH} = 2x10^{-10} mol/L$ en H_3O^+ soit $Co = [OH^-] = 10^{-14}/[H_3O^+] = 5x10^{-5} mol/L$

Co=5x10⁻⁵mol/L Vo=0,2L

Solution fille

C1=??? Vo=4L

C1= 2,5x10⁻⁶mol/L

On en déduit la concentration en H_30^+ dans la solution fille. $[H_30^+] = 10^{-14}/[OH^-] = 4 \times 10^{-9} \text{mol/L}$

pH=8,4