Fiche N°8-6 Oxydo-réduction

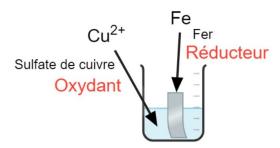
Classement électro-chimique

- Prévoir à partir d'une classification électrochimique qualitative, le sens d'évolution spontané d'une transformation d'oxydoréduction
- Identifier l'oxydant et le réducteur dans une transformation d'oxydoréduction d'équation de réaction donnée
- Classer expérimentalement des couples oxydant/réducteur.
- Écrire l'équation de réaction modélisant une transformation d'oxydoréduction à partir de deux demi équations de réaction.
- Solution de sulfate de cuivre à 0,1 mol / L
- Solution de sulfate de zinc à 0,1 mol / L
- Solution de sulfate de fer à 0,1 mol/L
- Métaux divers : aluminium, zinc, fer, étain...

1.) Compléter le texte ci-dessous :

Une réaction d'oxydoréduction consiste en un transfert d'électrons.

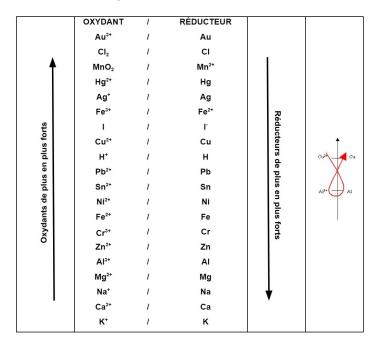
Lors d'une réaction d',	un élément chimique
des électrons. Lors d'une réaction de	, un élément chimique
des électrons.	


2.) Exemple de réaction d'oxydoréduction :

Oxydation du Fer (métallique) :	Réduction du cuivre :
$Fe \rightarrow Fe^{2+} + 2 e^{-}$	Cu $^{2+}$ + 2 e ⁻ \rightarrow Cu

Réaction d'oxydoréduction complète :

Fe + Cu
$$^{2+} \rightarrow$$
 Fe $^{2+}$ + Cu


L'élément **réducteur** perd des électrons et **réduit** l'oxydant (lui fait gagner des électrons). L'élément **oxydant** gagne des électrons et **oxyde** le réducteur (lui fait perdre des électrons).

Classement électro-chimique

3.) Classification électrochimique des couples oxydant/réducteur :

Cette classification permet de **prévoir** une réaction spontanée d'oxydoréduction : l'oxydant **le plus fort** réagit avec le **réducteur le plus fort**. La réaction suit le sens du **gamma**

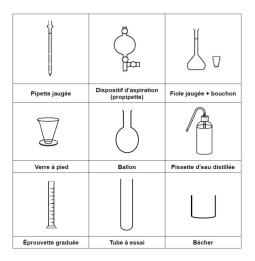
L'or pur peut-il être oxydé ? Justifier.

4.) Est-ce que les ions Pb²⁺ peuvent oxyder le fer ? Justifier.			
5.) Est-ce que les ions Ag ⁺ peuvent oxyder le mercure ? Justifier.			

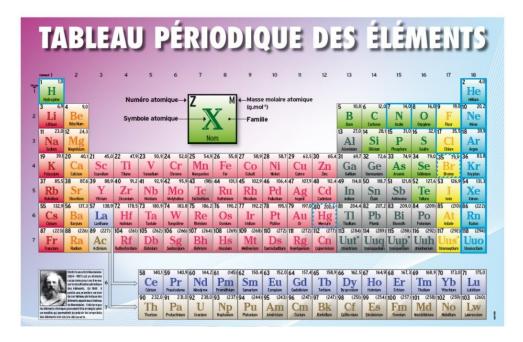
Protocole expérimental

6.) Choisir une solution parmi celles proposées et noter ses caractéristiques ci-dessous :

Fiche N°8-6 Oxydo-réduction


Classement électro-chimique

Nom de la solution	Formule de la solution		Concentration (en mol/L)
			1
7.) Choisir un métal parmi	ceux proposés et noter ses c	aract	éristiques ci-dessous :
Nom du métal	Symbole du métal	N	Masse molaire (g/mol)
· ·	action d'oxydoréduction aura	lieu e	entre la solution et le métal
choisi ? Justifier.			
,			
9.) Représenter par un sch	néma et décrire ci-dessous le	proto	ocole expérimental permettant
, ·	le métal et la solution sélectio	•	
Schéma légendé	Protocole		
	Démarche :		
	Demarche .		
	Équipements de prot	ectio	on:
10.) Après validation par le	e professeur, réaliser le protoc	cole ε	 et noter ci-dessous vos
observations :			
11.) L'hypothèse formulée	à la question 8 est-elle validé	e par	r vos observations ? Justifier.


Classement électro-chimique

12.) Confirmer ou infirmer votre réponse à la question précédente à partir d'une recherche sur internet.

Annexe 2 : Tableau périodique des éléments

