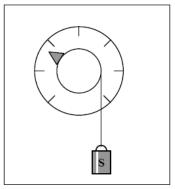
BUT DES MANIPULATIONS:

Etudier l'utilité de différents engins de levage : poulies et levier.

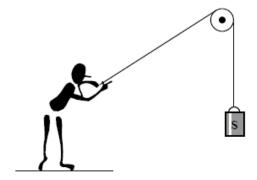
TRAVAIL A REALISER:


1. Le levage simple:

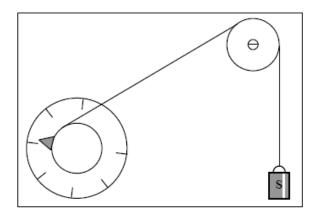
- à l'aide d'une balance, déterminer la masse m du solide S, puis calculer la valeur de son poids $\stackrel{\bigstar}{P}$ (Rappel : $P = m \times g$ avec g = 10 N/kg) :

$$m = \dots kg$$

- pour déterminer la valeur de la force F exercée par l'opérateur, réaliser le montage ci-dessous et mesurer F:



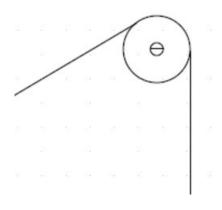
Représentez à l'échelle les forces qui s'exercent sur le seau.


Conclusion, aux incertitudes de mesures près (cocher la ou les bonnes réponses).

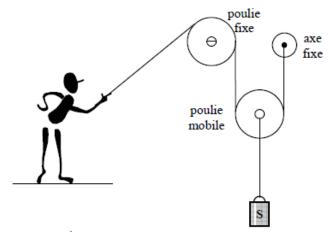
- \Box $F \approx P$
- \square les forces \overrightarrow{F} et \overrightarrow{P} ont la même direction.
- □ les valeurs des forces sont différentes.
- □ les forces ont le même sens.

2. Le levage avec poulie simple :

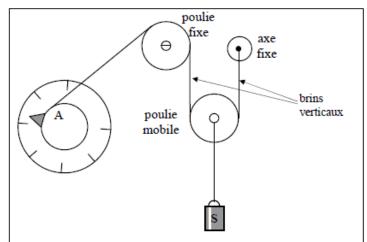
Pour déterminer la valeur de la force \vec{F}_1 exercée par l'opérateur, réaliser le montage ci-dessous et mesurer F_1 :


$$F_1 = \dots$$

Comparer (en utilisant les symboles <, > ou \approx) les valeurs F_1 et P:


Conclusion, aux incertitudes de mesures près (cocher la ou les bonnes réponses). \Box les forces \overrightarrow{F}_1 et \overrightarrow{P} ont la même direction.

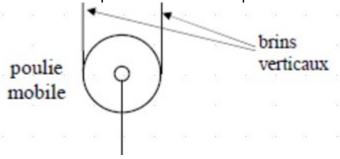
- \Box les valeurs des forces \overrightarrow{F}_1 et \overrightarrow{P} sont différentes.
- la poulie permet de réduire la valeur de la force nécessaire au levage.
- □ la poulie change la direction et le sens de la force nécessaire au levage sans en changer la valeur.


Représentez à l'échelle les forces qui s'exercent sur la poulie.

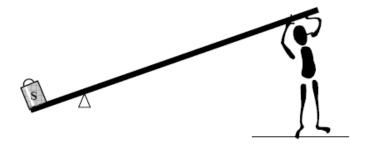
3. Le levage avec deux poulies :

Pour déterminer la valeur de la force \overrightarrow{F}_2 exercée par l'opérateur, réaliser le montage ci-dessous et mesurer F_2 .

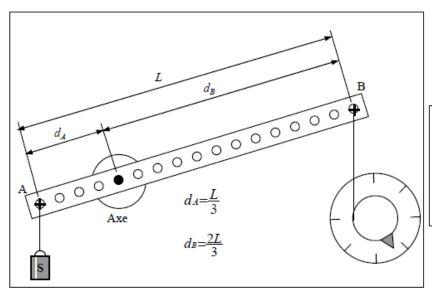
$$F_2 =$$


Comparer (en utilisant les symboles <, > ou \approx) les valeurs F_2 et P:

 $F_2 \quad \dots \quad F$


Conclusion, aux incertitudes de mesures près (cocher la ou les bonnes réponses).

- \square les forces \overrightarrow{F}_2 et \overrightarrow{P} ont la même direction.
- \square les valeurs des forces \overrightarrow{F}_2 et \overrightarrow{P} sont différentes.
- □ le dispositif permet de réduire la valeur de la force nécessaire au levage.
- le dispositif change la direction et le sens de la force nécessaire au levage sans en changer la valeur.


Représentez à l'échelle les forces qui s'exercent sur la poulie mobile.

4. Le levage avec levier:

Pour déterminer la valeur de la force \overrightarrow{F}_3 exercée par l'opérateur, réaliser le montage ci-dessous et mesurer F_3 :

Comparer (en utilisant les symboles <, > ou ≈) les valeurs F_3 et P:

 $F_3 \dots P$

Conclusion, aux incertitudes de mesures près (cocher la ou les bonnes réponses). \Box les valeurs des forces \overrightarrow{F}_3 et \overrightarrow{P} sont différentes.

- \square les forces \overrightarrow{F}_3 et \overrightarrow{P} ont la même direction.
- □ le dispositif permet de réduire la valeur de la force nécessaire au levage.
- □ le dispositif change la direction et le sens de la force nécessaire au levage sans en changer la valeur.
- $\square \quad F_3 \approx \frac{P}{2}.$

Représentez à l'échelle les forces qui s'exercent sur la barre.